\(\int (a+b \cos (c+d x))^{3/2} (A+C \cos ^2(c+d x)) \, dx\) [632]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 285 \[ \int (a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {4 a \left (70 A b^2-3 a^2 C+41 b^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (a^2-b^2\right ) \left (35 A b^2-6 a^2 C+25 b^2 C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b d}-\frac {4 a C (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 C (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d} \]

[Out]

-4/35*a*C*(a+b*cos(d*x+c))^(3/2)*sin(d*x+c)/b/d+2/7*C*(a+b*cos(d*x+c))^(5/2)*sin(d*x+c)/b/d-2/105*(6*a^2*C-5*b
^2*(7*A+5*C))*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b/d+4/105*a*(70*A*b^2-3*C*a^2+41*C*b^2)*(cos(1/2*d*x+1/2*c)^2)
^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/b^2/d/(
(a+b*cos(d*x+c))/(a+b))^(1/2)-2/105*(a^2-b^2)*(35*A*b^2-6*C*a^2+25*C*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2
*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/b^2/d/(a+b*co
s(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 285, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {3103, 2832, 2831, 2742, 2740, 2734, 2732} \[ \int (a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right ) \, dx=-\frac {2 \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{105 b d}-\frac {2 \left (a^2-b^2\right ) \left (-6 a^2 C+35 A b^2+25 b^2 C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {a+b \cos (c+d x)}}+\frac {4 a \left (-3 a^2 C+70 A b^2+41 b^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 C \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 b d}-\frac {4 a C \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{35 b d} \]

[In]

Int[(a + b*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2),x]

[Out]

(4*a*(70*A*b^2 - 3*a^2*C + 41*b^2*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(105*b^2*
d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) - (2*(a^2 - b^2)*(35*A*b^2 - 6*a^2*C + 25*b^2*C)*Sqrt[(a + b*Cos[c + d*x
])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(105*b^2*d*Sqrt[a + b*Cos[c + d*x]]) - (2*(6*a^2*C - 5*b^2*
(7*A + 5*C))*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(105*b*d) - (4*a*C*(a + b*Cos[c + d*x])^(3/2)*Sin[c + d*x]
)/(35*b*d) + (2*C*(a + b*Cos[c + d*x])^(5/2)*Sin[c + d*x])/(7*b*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2832

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Sim
p[b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rule 3103

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[
(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)), Int[(a + b*Sin[e + f*
x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) - a*C*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] &&  !Lt
Q[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d}+\frac {2 \int (a+b \cos (c+d x))^{3/2} \left (\frac {1}{2} b (7 A+5 C)-a C \cos (c+d x)\right ) \, dx}{7 b} \\ & = -\frac {4 a C (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 C (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d}+\frac {4 \int \sqrt {a+b \cos (c+d x)} \left (\frac {1}{4} a b (35 A+19 C)-\frac {1}{4} \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \cos (c+d x)\right ) \, dx}{35 b} \\ & = -\frac {2 \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b d}-\frac {4 a C (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 C (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d}+\frac {8 \int \frac {\frac {1}{8} b \left (5 b^2 (7 A+5 C)+3 a^2 (35 A+17 C)\right )+\frac {1}{4} a \left (70 A b^2-3 a^2 C+41 b^2 C\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{105 b} \\ & = -\frac {2 \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b d}-\frac {4 a C (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 C (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d}-\frac {\left (\left (a^2-b^2\right ) \left (35 A b^2-6 a^2 C+25 b^2 C\right )\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{105 b^2}+\frac {\left (2 a \left (70 A b^2-3 a^2 C+41 b^2 C\right )\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{105 b^2} \\ & = -\frac {2 \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b d}-\frac {4 a C (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 C (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d}+\frac {\left (2 a \left (70 A b^2-3 a^2 C+41 b^2 C\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{105 b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (\left (a^2-b^2\right ) \left (35 A b^2-6 a^2 C+25 b^2 C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{105 b^2 \sqrt {a+b \cos (c+d x)}} \\ & = \frac {4 a \left (70 A b^2-3 a^2 C+41 b^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (a^2-b^2\right ) \left (35 A b^2-6 a^2 C+25 b^2 C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b d}-\frac {4 a C (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 C (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.97 (sec) , antiderivative size = 224, normalized size of antiderivative = 0.79 \[ \int (a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {4 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \left (b^2 \left (5 b^2 (7 A+5 C)+3 a^2 (35 A+17 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )-2 a \left (-70 A b^2+3 a^2 C-41 b^2 C\right ) \left ((a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )\right )\right )+2 b (a+b \cos (c+d x)) \left (70 A b^2+6 a^2 C+65 b^2 C+48 a b C \cos (c+d x)+15 b^2 C \cos (2 (c+d x))\right ) \sin (c+d x)}{210 b^2 d \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[(a + b*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2),x]

[Out]

(4*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*(b^2*(5*b^2*(7*A + 5*C) + 3*a^2*(35*A + 17*C))*EllipticF[(c + d*x)/2, (2
*b)/(a + b)] - 2*a*(-70*A*b^2 + 3*a^2*C - 41*b^2*C)*((a + b)*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - a*Ellipti
cF[(c + d*x)/2, (2*b)/(a + b)])) + 2*b*(a + b*Cos[c + d*x])*(70*A*b^2 + 6*a^2*C + 65*b^2*C + 48*a*b*C*Cos[c +
d*x] + 15*b^2*C*Cos[2*(c + d*x)])*Sin[c + d*x])/(210*b^2*d*Sqrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1130\) vs. \(2(319)=638\).

Time = 18.86 (sec) , antiderivative size = 1131, normalized size of antiderivative = 3.97

method result size
default \(\text {Expression too large to display}\) \(1131\)
parts \(\text {Expression too large to display}\) \(1279\)

[In]

int((a+cos(d*x+c)*b)^(3/2)*(A+C*cos(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c
)^8*b^4+(-312*C*a*b^3-360*C*b^4)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(140*A*b^4+108*C*a^2*b^2+312*C*a*b^3+
280*C*b^4)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-70*A*a*b^3-70*A*b^4-6*C*a^3*b-54*C*a^2*b^2-128*C*a*b^3-80
*C*b^4)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-35*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*
c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b^2+35*A*b^4*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+
140*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1
/2*c),(-2*b/(a-b))^(1/2))*a^2*b^2-140*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a
-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^3+6*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)
*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^4-31*C*(sin(1/2*d*
x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b)
)^(1/2))*a^2*b^2+25*C*b^4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*Ell
ipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-6*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^
2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^4+6*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2
*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3*b+82*C*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(
-2*b/(a-b))^(1/2))*a^2*b^2-82*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/
2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^3)/b^2/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/
2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 530, normalized size of antiderivative = 1.86 \[ \int (a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {\sqrt {2} {\left (-12 i \, C a^{4} - i \, {\left (35 \, A - 11 \, C\right )} a^{2} b^{2} - 15 i \, {\left (7 \, A + 5 \, C\right )} b^{4}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + \sqrt {2} {\left (12 i \, C a^{4} + i \, {\left (35 \, A - 11 \, C\right )} a^{2} b^{2} + 15 i \, {\left (7 \, A + 5 \, C\right )} b^{4}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) - 6 \, \sqrt {2} {\left (3 i \, C a^{3} b - i \, {\left (70 \, A + 41 \, C\right )} a b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 6 \, \sqrt {2} {\left (-3 i \, C a^{3} b + i \, {\left (70 \, A + 41 \, C\right )} a b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + 6 \, {\left (15 \, C b^{4} \cos \left (d x + c\right )^{2} + 24 \, C a b^{3} \cos \left (d x + c\right ) + 3 \, C a^{2} b^{2} + 5 \, {\left (7 \, A + 5 \, C\right )} b^{4}\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{315 \, b^{3} d} \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2),x, algorithm="fricas")

[Out]

1/315*(sqrt(2)*(-12*I*C*a^4 - I*(35*A - 11*C)*a^2*b^2 - 15*I*(7*A + 5*C)*b^4)*sqrt(b)*weierstrassPInverse(4/3*
(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b) + sqrt(
2)*(12*I*C*a^4 + I*(35*A - 11*C)*a^2*b^2 + 15*I*(7*A + 5*C)*b^4)*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^
2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b) - 6*sqrt(2)*(3*I*C*a
^3*b - I*(70*A + 41*C)*a*b^3)*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, we
ierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x
+ c) + 2*a)/b)) - 6*sqrt(2)*(-3*I*C*a^3*b + I*(70*A + 41*C)*a*b^3)*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)
/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1
/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b)) + 6*(15*C*b^4*cos(d*x + c)^2 + 24*C*a*b^3*cos(d*x + c) +
3*C*a^2*b^2 + 5*(7*A + 5*C)*b^4)*sqrt(b*cos(d*x + c) + a)*sin(d*x + c))/(b^3*d)

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**(3/2)*(A+C*cos(d*x+c)**2),x)

[Out]

Timed out

Maxima [F]

\[ \int (a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)^(3/2), x)

Giac [F]

\[ \int (a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right ) \, dx=\int \left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(3/2),x)

[Out]

int((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^(3/2), x)